Effective dynamics of twisted and curved scroll waves using virtual filaments.

نویسندگان

  • Hans Dierckx
  • Henri Verschelde
چکیده

Scroll waves are three-dimensional excitation patterns that rotate around a central filament curve; they occur in many physical, biological, and chemical systems. We explicitly derive the equations of motion for scroll wave filaments in reaction-diffusion systems with isotropic diffusion up to third order in the filament's twist and curvature. The net drift components define at every instance of time a virtual filament which lies close to the instantaneous filament. Importantly, virtual filaments obey simpler, time-independent laws of motion which we analytically derive here and illustrate with numerical examples. Stability analysis of scroll waves is performed using virtual filaments, showing that filament curvature and twist add as quadratic terms to the nominal filament tension. Applications to oscillating chemical reactions and cardiac tissue are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Dynamics of Scroll Waves in Excitable Media

An overview is given of the attempts to understand the behavior of scroll waves in threedimensional excitable media using analytical methods, and these results are compared with recent numerical and experimental results. The behavior of untwisted planar scroll rings, twisted rings and helices, and knotted scroll wave filaments is discussed.

متن کامل

Scroll Wave Turbulence

Figure 1: Scroll wave turbulence developed from a scroll with a curved filament. Simulation of FitzHugh-Nagumo model in 3D, parameters as in (Biktashev 1998). Red surfaces are fronts (u=0,v<0) blue surfaces are backs (u=0,v>0) of excitation waves, and yellow lines are singularities (u=0,v=0)rotating around slowly moving scroll filaments, where u,v are respectively the activator and inhibitor fi...

متن کامل

Motion of Scroll Wave Filaments in the Complex Ginzburg-Landau Equation

Rotating spiral waves are observed in a variety of physical, chemical, and biological settings including the Belousov-Zhabotinsky (BZ) reaction, thermal convection in a thin fluid layer, slime mold on a nutrient-supplied medium, and waves of electrical activity in heart tissue [1,2]. While much attention has been devoted to spiral waves in two dimensions, there has also been increasing interest...

متن کامل

Scroll waves in the presence of slowly varying anisotropy with application to the heart.

We consider the dynamics of scroll waves in the presence of rotating anisotropy, a model of the left ventricle of the heart in which the orientation of fibers in successive layers of tissue rotates. By choosing a coordinate system aligned with the fiber rotation and studying the phase dynamics of a straight but twisted scroll wave, we derive a Burgers' equation with forcing associated with the ...

متن کامل

Dynamics of Scroll Wave in a Three-Dimensional System with Changing Gradient

The dynamics of a scroll wave in an excitable medium with gradient excitability is studied in detail. Three parameter regimes can be distinguished by the degree of gradient. For a small gradient, the system reaches a simple rotating synchronization. In this regime, the rigid rotating velocity of spiral waves is maximal in the layers with the highest filament twist. As the excitability gradient ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 88 6  شماره 

صفحات  -

تاریخ انتشار 2013